The following C program finds the solution to system of linear equations using Gaussian Elimination, given there exists a unique solution to the problem
#include <stdio.h> #include <stdlib.h> int no; double **A, *B, *x; void Gauss(int n) { int r, c, d=no-n; if(n != 1) { for(r=d+1; r < no; r++) { for(c=d+1; c<no; c++) A[r][c] -= A[r][d]/A[d][d] * A[d][c]; B[r] -= A[r][d]/A[d][d] * B[d]; A[r][d]=0; } Gauss(n-1); } for(c=d+1; c<no; c++) B[d] -= A[d][c]*x[c]; x[d] = B[d]/A[d][d]; } void acceptNsolve() { int r, c; printf("Enter the no of unknowns\n"); scanf("%d", &no); printf("Enter the coefficient matrix\n"); A=malloc(no); for(r=0; r<no; r++) { A[r] = malloc(no * sizeof(double)); for(c=0; c<no; c++) scanf("%lf", &A[r][c]); } printf("Enter value of constants in the column vector\n"); B = malloc(no * sizeof(double)); for(r=0; r<no; r++) scanf("%lf", &B[r]); x = malloc(no * sizeof(double)); Gauss(no); printf("The solution of the given linear equations is\n"); for(r=0; r<no; r++) printf("%g\n",x[r]); } int main() { acceptNsolve(); return 0; }
Input: Enter the no of unknowns 3 Enter the coefficient matrix 5 3 1 2 1 3 1 2 4 Enter value of constants in the column vector 16 19 25 Output: The solution of the given linear equations is 1 2 5